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A probabilistic model describing tracer transport in multiphase spatially 
inhomogeneous transport (plug-flow) systems is presented. The properties 
of the trajectories are completely described by a two-component Markov 
process with absorbing boundaries. The first component is continuous, the 
second discrete. Infinitesimal conditions are given. Probabilities associated 
with the process are derived. 
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1. INTRODUCTION 

T h e  t r a ce r  t e c h n i q u e  h a s  b e c o m e  a s t a n d a r d  t e c h n i q u e  in  t h e  i d en t i f i c a t i o n  o f  

f low s y s t e m s  a n d  pa r t i c l e  s y s t e m s  in  t h e  f ields o f  c h e m i c a l  eng inee r ing ,  
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medicine, and physics. Testimony to this is the large amount of literature 
concerned with the subject (see, for example, Refs. 1-3). 

Basically the technique consists in the injection of marked material (e.g., 
colored, radioactive) at one or several points (not simultaneously) into the 
system with arrival times being measured at other points. It is assumed that 
the injected material does not disturb or affect system behavior, i.e., the 
behavior of the marked material typifies the unmarked one. 

Generally the point of view taken is one of the following: 
(a) The tracer technique is used to experimentally determine the transfer 

function(s) [i.e., the arrival time distribution(s)] between the input(s) [injec- 
tion point(s)] and the output(s) [measurement point(s)]. By using a finite 
number of such input-output pairs (transfer functions) the system is modeled 
by an n-dimensional lumped parameter system. Based on the form of the 
transfer function(s) (e.g., moments) a qualitative or quantitative judgement is 
made concerning the nature of the system. In particular the qualitative point 
of view is taken in the medical profession where the judgement is the state of 
health of the organ or body being examined. This idea is embodied in the 
frequently used Stewart-Hamilton technique. ~4-7~ More recent research em- 
bodying the above ideas can be found in Refs. 8-11. In particular Ref. 11 
contains a lengthy bibliography of pertinent research. 

(b) The system is assumed to be specified (i.e., by mathematical equa- 
tions). Based on this assumption calculations are made to determine the 
distribution of tracer particles throughout the system as a function of time, 
including of course at the measurement points. The veracity of the assumed 
model is ascertained by comparison of the calculated arrival times with those 
experimentally obtained. This in particular is a point of view taken in physics 
and in chemical engineering. ~12-14~ As the particles move through space and 
time the system is described by a distributed parameter model. 

In this work we shall adopt the second point of view. Our purposes are 
threefold: 

(1) For the first time to provide a full, mathematically rigorous descrip- 
tion of tracer distribution in the particular system of interest. 

(2) To develop a framework which will lead to a system approach to 
identification. Toward the accomplishment of this goal we derive all relevant 
properties. 

(3) To indicate how one can solve the partial difference equations ap- 
pearing here. In particular in Section 4 we suggest a continuous time Monte 
Carlo simulation as opposed to more usual discrete time simulations and 
commonly employed numerical techniques. 

We shall deal with flow systems in which there exist distinct flows 
(phases), each of which differs dynamically from the others. Further, there is 
an exchange of material between the different phases either by chemical or 
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mechanical means. Some attempts have been made in the engineering litera- 
ture to evaluate the arrival time distributions (also called residence time dis- 
tributions, RTD) for such flow systems with more than one phase. This was 
done for the following cases: a stagnant phase and a flowing phase, a flowing 
phase and absorption, and two flowing phases (see Refs. 12-17). The solutions 
were obtained by writing a material balance for each phase and seeking a 
solution at the edges. 

We note in passing that there are dual heat exchange systems in which 
the tracer is heat energy introduced into the system. In these systems tem- 
perature is measured at various points. 

The class of systems considered in this work are commonly known as 
multiphase plug-flow (transport) systems in chemical engineering (physics). 
These systems are formally described by a finite set of coupled, first-order, 
hyperbolic partial differential equations. Each such equation describes a 
phase of the system and its connection with the other phases. We shall assume 
that the system is described on the subinterval [a, b] of the real line and is 
time homogeneous. Each phase i is characterized by a velocity profile f(x, i) 
and exchange coefficients t,s(x); each of the latter represents the time rate of 
exchange of material between the different phases i and j at the point 
x ~ [a, b]. In Section 2 we present a complete description of the physical 
system along with a formal derivation of the partial differential equations by 
a material balance. 

In all of the above-mentioned works a deterministic approach was used 
(i.e., material balance equations). We note, however, that the motion of a 
tracer particle is stochastic in nature and that the time-space distribution of 
many such noninteracting particles should be describable by the probability 
distribution associated with an appropriate random process. 

In the present work a probabilistic model is suggested to describe tracer 
flow (in transport) in multiphase plug-flow systems. The phases are classified 
in the following manner: rest phases (stagnant), forward phases, and back- 
ward phases. Absorption or exit occurs at the forward end in forward phases 
and at the back end in backward phase s (closed systems). In Section 3 the set 
of possible trajectories through the plug-flow systems for a tracer particle is 
described. Based on the physical description in Section 2, the tracer particle 
is assumed to follow a continuous path in a particular phase, its velocity being 
identical to that of the phase at the point at which the particle is located. The 
velocity profile for each phase is assumed to be a function of position (i.e., not 
necessarily constant). The particle at every instant decides whether or not to 
remain in its present phase and if not, to which other phase to jump. The 
decision to jump is based on the assumed infinitesimal properties of a 
postulated Markov transition probability. These infinitesimal conditions vary 
as a function of position. 
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In Section 4 properties of the process assumed in Section 3 are derived 
based on the postulated infinitesimal properties. A particular weak infinitesi- 
mal operator is derived. In Section 5 there is further discussion relating this 
work to other work. 

A word on notation is appropriate. The symbol s is used to indicate 
belonging, and e is used to denote an arbitrarily small, positive scalar quan- 
tity. The term exp signifies exponent. The symbol Et denotes mathematical 
expectation at time t. IB(x) represents the indicator function of the set B, i.e., 
IB(x) = 1 if x is in B, otherwise Is(x) = 0. The symbolism o(At), At > 0, 
represents a quantity of order of magnitude less than At, i.e., limAt~0 [o(At)/ 
At] = 0. All other notations are defined in the text. 

2. DESCRIPTION OF THE PHYSICAL SYSTEM 

We consider a conservative mass flow system defined on the subinterval 
of the real line [a, b]. We shall assume the existence of m different interwoven 
parallel flows, called phases, each of which at time t and at any cross section, 
i.e., x ~ [a, b], is characterized by a velocity f ( t ,  x, i) m/sec for i -- 1 .. . . .  m. 
That  is, all particles belonging to a particular phase at cross section x are 
moving with the same velocity. In chemical engineering this is known as 
"infinite radial diffusion" (i.e., a "white noise" type assumption which 
implies that particles are uniformly distributed within each phases and that 
present location within the phase cross section is independent of the past). We 
also suppose that at any x c [a, b] there exists a mechanism (e.g., chemical, 
mechanical) by which particles or material move from phase to phase. This 
mechanism will be represented by a positive exchange coefficient A~j(t, x), 
whose units are sec- 1 and which accounts for the fraction of the material in 

phases L -  m 

f ( t , x , t )  

f {  t , x , m )  

kij ( t,x ) 

Fig. 1 

a x b 
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phase i moving to phase .L i r j ,  at time t and cross section x ~ [a, b]. 
Pictorially we represent this in Fig. 1. 

The phases will be restricted to one of the following three categories: 
forward, backward, and rest. Forward and backward phases shall be called 
dynamic phases. Rest phases are those for which f ( t ,  x, i) = 0 for all t and 
x ~ [a, b]. Further, it is assumed that there exists anfmin > 0 such that  i f  i is 
a forward (backward) phase f ( t ,  x, i ) >  fmin ( < - - f ~ i n )  for all t and 
x E [a, b) ((a, b]). For  the case of  forward (backward) phases new material 
enters the system from outside at x = a (x = b) and exits at x = b (x = a). 
For the case of  rest phases no new material enters f rom without. At exits the 
material is collected in some fashion. 

Continuing, we shall formally derive the transport  equations which 
describe the aforementioned system. 

Let F(t, x, i) be the total amount  of  material in phase i at time t in the 
interval [a, x]. Let k~(t) be the rate at which new material is entering dynamic 
phase i. Let At > 0 be an arbitrary small interval of time. We use At to define 
the following partitions of  the various phases :  For  a forward (backward) 
phase i we form the spatial partition {a, xl ~, x2 ~ .. . .  , b} by the recursion 
xi+ l = x /  + f ( t ,  x / ,  i) At (xi + l = xz - f ( t ,  x / ,  i) At),  where x0 ~ = a :  For  a 
rest phase the partition is generated by xi+ 1 = x / +  c~ At, where ~ > 0 is 
arbitrary. With the aid of  Fig. 2, which illustrates the case of a forward 
phase, we heuristically formulate the equations of  mass balance. 

F(t  + At, x,  i) = F(t,  x - f ( t ,  x, i) At, i) 
m [xt]  < x 

+ ~ ~ )t~,(t, x / )  At [r(t,  x[+ 1, j )  - F(t,  xJ, j)] 
j = 1  / = 0  

Cxq < X 

t = 0  

f 
t + A ~  

+ k,(r) + o(At) 
v t  

k i ( t )  - - - - -~  

a I"-- b 
r 

x -  f ( t l x , i )  A t  

Fig. 2 
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where [ ] ~< x denote the largest element in the partition less than x, and 
)~, = ~ =  1,j** A,j. Note that the second term on the right represents the total 
material passing from phases other than i to i during time At, while the third 
term on the right denotes the total material leaving i for other phases during 
At. 

Letting At -+ 0, differentiating both sides with respect to x, and using the 
notation C(t, x, i )=  OF(t, x, i)/~x to denote the concentration per unit 
length of material in i at time t and position x, one formally obtains the 
following set of hyperbolic partial differential equations (utilizing the obvious 
shortened notations): 

~-7 = s ( f~co  + ;~ ,G - ;~.c, 
j = l  

(1) 

for i -- 1, ..., m. 
In the general case both f~ and h~j are assumed to be functions of the 

different local concentrations and their derivatives and thus Eq. (1) is 
nonlinear. 

Here we shall assume that the velocities and exchange coefficients are not 
explicitly time dependent and that a time-independent (steady-state) solution 
exists for Eq. (1), subject of course to the appropriate time-invariant boundary 
conditions (i.e., k, constant for each i). We shall further suppose that the 
steady-state solution is asymptotically stable. 

The introduction of marked tracer material into such a system is pre- 
sumed not to disturb the steady-state solution and a mass balance such as 
provided above, but this time only for the tracer, results again in m equations 
of the form of (1). However, in this case since the velocities and exchange 
coefficients are supposedly unperturbed from their steady-state values, we can 
express them as explicit functions of position x and phase coordinates. This is 
entirely analogous to the point of view taken in shock theory in which the 
shock dynamics are taken to be the first-order (i.e., linear) variation about a 
steady-state solution. 

The purpose of the injection of tracer into the system is generally to 
determine experimentally behavior or parameters of the systems which 
cannot be directly measured. 

Let C(t, x, y) denote a solution to (1) for the tracer concentration for 
x ~ [a, b], y ~ {1, ..., m). Let g(x, y) denote a bounded function of the two 
variables. Proceeding formally, multiply both sides of Eq. (1) for phase i by 
g(x, i); integrate with respect to x, sum over the i 's; interchange the order of 
differentiation and integration freely; use integration by parts and assume 
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that the product gfC is zero at the system boundaries. This formal manipu- 
lation results in 

,=1 g(x, i)C(t, x, i) dx 

= x, t) ~ + g(x,j))~,y(x) -- g(x, i)&,(x) C(t, x, i) dx 
a i=i j=l 

(2) 

subject of course to appropriate boundary conditions. 
In the next section we postulate the existence of a two-component 

Markov process with discrete second component. In Section 4 we identify the 
terms in Eq. (2) with a weak infinitesimal operator (generator) of this process. 

3. THE M A R K O V  TRACER M O D E L  FOR AN m-PHASE PLUG- 
FLOW SYSTEM 

A. We denote the space of sample functions of the process by fL The 
letter z will denote the vector [x, y], where x takes values in the closed 
interval of the real line [a, b], a < b, and y takes values in the set of m points 
Y = {1 .. . .  , m}. Each point in Y shall be called a phase. H will symbolize the 
state space of the process which is the product space [a, b] x Y. 

~2 is the set of all the functions z(t, o~) taking values in H, where t belongs 
to the semiinfinite interval [0, oe) and where y(t, ~o) is a function in the space 
of  all right continuous step functions on [0, oo) taking values in Y with a 
finite number of isolated jumps (i.e., changes in value) on every bounded 
subinterval [tl, t2], 0 ~< tl < t2 < oo. The index t shall be interpreted as time. 
On [0, oo), x(t, o~) satisfies the differential equation 

2(t, o 0 = f ( x ( t ,  oJ), y(t,  co)) (3) 

with the initial condition x(0, co) = xo in [a, b]. The functions f ( x , j )  for 
j ~ Y are uniformly bounded in x on [a, b]. We shall arbitrarily assume that 
the phase j for 1 ~< j ~< /1 is a rest phase, for/1 + 1 ~< j ~< /2 a forward phase, 
and for /2 + 1 ~< j ~< m a backward phase (see Section 2 for the velocity 
properties defining the different phases). In addition we shall assume that for 
a forward (backward) phase i, f ( x ,  i) is at least Lipschitz continuous in x on 
[a, b) ((a, b]) and that f(b,  i) = 0 (f(a,  i) --- 0). Let fm~x = maxz~ttlf(x,y)].  

By the solution to Eq. (3) on any time interval [0, T] we shall mean the 
solution obtained by joining (by continuation) the solutions on the intervals 
between discontinuities in the derivative of x(t, ~o), using the limiting state 
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from the left (i.e., before the discontinuity) as the initial state for the interval 
commencing with the time of the discontinuity in the derivative. Clearly the 
solution to (3) is continuously differentiable except at a finite number of 
points on. [0, T], at which the derivative is continuous from the right. It  
follows from the above description that x(t ,  oJ) is confined to the interval 
[a, b] for all t >I 0. 

For  each o~ we shall interpret each x(t,  o~) for t >/0 as one of the possible 
trajectories of a tracer particle with the jump times and the phases visited 
given by the function y(t ,  ~o). 

B. We take as the g-field of events on f~, denoted/3, the one generated by 
all finite base cylinder sets of the type 

{~o : z (q ,  ~o) ~ A1 . . . .  , z(t , ,  to) ~ A ,}  

for every finite subset of times t~ belonging to [0, ~ )  and for arbitrary events 
A~ belonging to the e-field in H, denoted 3~, generated by product sets of the 
form [e, d] • {i}, where a ~< c <~ d ~< b, and i belongs to Y. 

One can verify that sets of the form 

{co: y(t ,  oJ) jumps exactly n times on [0, T]} 

are events in/3 for each n, n = 0, 1, ..., and T >/ 0. 
We shall assume the following properties for the exchange coefficients 

A~j. For  the case of a rest phase i we require ~-j(x) to be continuous for all 
x ~ [a, b] and for each j # i. For  i a forward (backward) phase for each 
j # i we take A~j(x) to be piecewise continuous bounded on [a, b) ((a, b]) with 
at most a finite number of discontinuities. At a point of discontinuity we 
require ;~j(x) to be continuous from the right (left). At x = b (x = a), 
A,j(b) = 0 (~j-(a) = 0). 

C, We postulate the existence of a time stationary Markov transition 
function on the state space H and ~-field/3 which generates a strong Markov 
process on (f~,/3) possessing the infinitesimal properties stated below. For 
A ~ ~ we shall denote this transition function by P(% A [z) where r /> 0 and 
z ~ ~ .  (See Dynkin, (22) Chapter II.) By generation of the Markov process by 
the Markov transition probability we mean that for t i> s the probability of 
being at time t in set A, conditioned on being at point z at time s, is given by 

P(t ,  A[s, z) = P ( t  - s, Alz)  

Let i be a forward (backward) phase and the set of discontinuities on 
[a, b) (on (a, b]) of A,j(x) f o r j  # i be p~, k = 1 .. . . .  nts. We then assume that 
for each At > 0 a n d j # i  

IP(At ,  [a, b] • { j} lx ,  i) - A,j(x)At[ ~< o(At)  
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uniformly for all x outside of the subintervals [p# - fmax At, p#] ([p~J, p# + 
fmax At]), for k = 1, ..., n,j. Clearly this implies that the probability of 
jumping to phase j from phase i, position x, on a time interval of duration 
At is of the order of A,j(x) At. 

For  the case of i a rest phase we assume that the last relation is true 
uniformly for all x E [a, b]. Second, we assume that there exists a positive 
constant L such that 

P(At,  [a, b] • {j}[x, i) ~ L At 

uniformly for all z e H. Third we require that the probability 

P( two or more jumps in time Atlz) ~ o(At) 

uniformly for all z e H. 
We can interpret the function h~j as local mean time to jump from y = i 

to y = j given the state z = [x, i]. 
We wish to s trongly  emphas i ze  the fact of the assumption allowing for 

discontinuities in the exchange coefficients as described above. 
We now proceed in Section 4 to use the infinitesimal properties to further 

characterize the process. 

4, PROCESS PROPERTIES 

Assuming the existence of the postulated transition probability function 
in Section 3, we proceed to develop formulas one of which is the probability 
that there will be no jump on a specified interval given the initial state at the 
beginning of the interval, the other being the probability of jumping from 
phase i to phase j on a specified interval given the initial state z. Second, we 
derive a weak infinitesimal operator of the process and specify its domain. 
We conclude this section with a discussion of additional properties possessed 
by the process. 

Theorem 1. For  each t ~ [0, ~ ) ,  c~ > 0, 

f ~t+~ 1 
P ( y , + ,  = y,  each ~ c [0, a]It, z) = exp[-j, as] 

where z = [x, y] and x~ is the solution to the differential equation on [t, t + a) 

2~ = f ( x , ,  y ) ,  xt  = x 

The proof  is given in Appendix A. 
We remark that if we take ~, to be the time to the first jump after time t, 

then 

P6'/> ~lt, z) = P(no  jump on [t, t + c~lt, z) = exp - Ay~(x.) ds 
t 
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Corollary to Theorem 1. For a < xl ~< x2 ~< b (a ~< x2 ~< xl ~< b) and 
y a forward (backward) phase 

r ;x2~y,(v) 1 
P(re'aching x2 without jumping Ix1, y) = exp [ -Jxlf(f(-~,Y)Y) dv J 

Proof. The proof follows from Theorem 1, time stationarity, and the 
properties assumed for f ( x ,  y). 

Theorem 1 can also be derived by the method described by Skorokhod, (18) 
who treats processes related to this work. 

Theorem 1 and its corollary provide the basis for an exceedingly simple 
method for Monte Carlo simulations of our transport process, in particular 
for the case of an inhomogeneous system. In order to find the location of the 
next jump point, one simply transforms the output of a random number 
generator into the jump point by means of the corollary and a standard 
technique. By the strong Markov property one generates a series of jump 
points. At each jump point x a jump to phase j from i is made according to 
the probability h~j(x)/~(x) for j ~ i (see Theorem 2). We contrast this to the 
more common multidecision Monte Carlo techniques which entail stopping 
the process on a grid of specified times at each of which a decision is made 
whether or not the tracer particle remains in the present phase or moves to 
another. 

Application of the technique suggested above to the solution of first- 
order hyperbolic partial differential equations and comparison of this 
technique to a standard method, the method of characteristics, is being made. 
It appears that the more inhomogeneous the system, the greater the un- 
reliability of the method of characteristics. 

Using the infinitesimal conditions and the last result, one can derive the 
conditional probability of jumping from i to j on a finite interval. This result 
is stated below. The explicit form in the theorem is exploited in the proof of 
results related to tracer identifiability. (~9) 

Theorem 2. 

P(y( t  + a) = j ~ i, one jump on [t, t + ~]lt, x, i) 

= exp - )h.~(x,) d7 )q.j(x~) e x p [ - [  Aj~(xB* ) d[3 ds 
t L ~ S  

where x, is the solution to 

2, = f ( x , ,  i), y e [t, s) 
X t =  X 
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and xB* is the solution to 

YcB* = f (xB* , j )  , fi ~ Is, t + a] 
xs* = x s  

The :proof is given in Appendix B. 

As a check, one can work backward to derive the infinitesimal conditions 
from Theorems 1 and 2. 

We shall let the symbol g(x) denote the vector 

g ( x )  = . 

Lg(x, m)] 

where g(x, i), i = 1, ..., m, are functions belonging to the Banach space 
B(H)  of bounded, measurable functions on H with the norm SUpHIg(x, y)[. 

Without further comment we note that in the sequel we shall use both 
the scalar and vector notations, the choice being simply a question of  con- 
venience in the particular instance. For  At > 0 we shall now investigate the 
operation 

lim Et+~t(g[t, z) - g(z) 
A t ~ o  At 

where 

Et+At(g[t, z) = g ( x , j )  d=P(t + At, X <~ a, y = l i t ,  z) 
. =  

where z = [x, y], and g(x,  y)  e B(H).  I f  the pointwise limit exists, we shall 
denote it by Ag(z), A being the weak infinitesimal operator of  the process on 
B (see Dynkin, (22~ Chapters I and II). Da, the domain of A in B, will denote 
the subset of functions in B for which the pointwise limit exists and is bounded 
for all z e H. Continuing, 

Et+zxt(glt, z) " g(z) 
At 

1[( )j 
= A--t g x + f ( x , ,  y)  d~,, y P(no jump on [t, t + zXtl[t, z) 

' Jr  

1 m 1 o(At)  
+ --~ ~ ,  E(Ic~,g(xt+at,j)l t, z) - -Kig(z) + A----i-- (4) 

j ' ~ y  

where 

Cyj---{co: x t = x ,  y t = y ,  o n e j u m p t o j e y o n [ t , t +  At]} 

and x~ for y e [t, t + At] is the solution to ~ = f (x~,  y), xt = x. 
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Noting that with probability one xt for t >/ 0 is restricted to [a, b], we let 
the term o(At) uniformly in z take care of the case of two or more jumps on 
[t, t + At]. 

We now consider the various types of phases. 

(a) Let y be a restphase. Let At > 0 be arbitrary. By the path properties 
and the infinitesimal conditions the right side of Eq. (4) becomes 

1 x -~g(x,  y)[1 -- ,~(x)  At + o(AO] -- ~-~g( , y) 

1 2 o(At) + -~ E(Ie~lg(x~+6t,j)]t, z) + A---T- 
j = l  
i c y  

Also for j r y 

Et+At(Ie~,g]t,z) <. AtAuj(x)supg(x +f~xC~,j)  + o(At) . (5) 

>/ At Ayj(x) inf g(x + frusta, j)  + o(At) 
ae4) t 

where the o(At) terms are uniformly bounded in x and the set 

for fo wara 

1  or  ackward 
Thus by taking g(x, i) to be right (left) continuous f o r j  forward, 

m 
lira Et+At(g[t, z) -- g(z) _ Ay~(x)g(x, y) + ~ hyj(x)g(x,j) (6) 
at-~o At j = l  

]~SU 

independently of t, uniformly in x. 

(b) Let y be a forward phase. Choose At > 0 such that x < p~ - 
fm~ At for each k, k -- 1, ..., n~j, and for each j r y (i.e., At sufficiently 
small such that on [t, t + At] the trajectory does not encounter a point of 
discontinuity of A~j). 

Rewriting Eq. (4) and using the infinitesimal conditions 

Et +At(glt, z) -- g(z) 
ft; + A t  r," 

g(x + Jt JtX~, y) cl~, y) - g(x, y) 
At 

[ ft t+At y] -- hyy(x)gLx + f(xy, y) dr, 

1 j~ o(At) 
+ --~ .= Et+je~jg]t, z) + A--'--T- (7) 

~ y = fo~ : 
or 

Cj = {~: 
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Assume that g(x, y) has a piecewise continuous derivative with respect to 
x with at most a finite member of discontinuities, and right continuous at the 
points of  discontinuity. Further restrict At such that the derivative is con- 
tinuous on [x, x + fm~x At). For  each such At apply the mean value theorem 
to the first term on the right side of (7) twice, once to g and once to 

f~+a~f(xv, y) dy. We thus obtain 

g(x + f~+atf(xr, y) ely, y) - g(x, y) 
At 

/~t+At 

= + j ,  

where 0 < @~ < 1 for i = 1, 2 and g'  denotes the partial derivative with 
respect to x. 

From the path properties and the infinitesimal properties for the values 
of At > 0 given above we conclude that the third term on the right side of 
(7) is bounded from above and below as in (5). Therefore by (8), (5), and the 
continuity of g, g', f a n d  of  the trajectory x~ at x 

lim E~+A~(glt' z) - g(z) 
~ t - . o  At 

8+g(x' Y) A~(x)g(x, y) + ~. A~y(x)g(x,j) 
= f(x,  y) 8x 

J = l  ] r  

(9) 

where + indicates derivative from the right. 
For x -- b it follows immediately from the path properties that Eq. (4) 

equals zero for each At > 0. 

(c) Let y be a backward phase. Choose At > 0 such that x > p~s + 
fm~x At for each k, k = 1, ..., nvs, and for each j  ~ y. Assume that g(-, y) has 
a finite, piecewise continuous derivative with at most a finite number of dis- 
continuities and left continuous at point of  discontinuity. Proceeding as for 
case (b), we obtain an equation similar to (9) with the only exception being 
that the right derivative with respect to x is replaced by the left derivative. 

For  x = a one can verify that Eq. (4) equals zero for each At > 0. 

Imposing the notation convention that f(x,  y) = 0 implies that f (x,  y) 
Og(x, y)/Sx = 0, we sum up the above in the following theorem. 

Theorem 3. The weak infinitesimal operator A in B of  the Markov 
process is given by 

8g(x, y) m 
Ag(z) = f(x,  y) 8x g(x, y)A~u(x) + E g(x,j)h~y(x) (10) 

Y = I  
Y,~y 

The domain of DA is given by the set of functions g(x, y) on Hwhich  have 
finite, piecewise continuous derivatives with respect to x with at most a 
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finite number of discontinuities, right (left) continuous at the points of dis- 
continuity for y a forward (backward) phase. 

Remark. Obviously the state (b, y) ((a, y)) where y is a forward (back- 
ward) phase is an absorbing state (see Dynkin, (22> p. 137, lemma 5.3). This is 
expressing mathematically the intuitively obvious fact that upon reaching the 
right (left) boundary in a forward (backward) phase the path remains at that 
boundary for all times thereafter. 

We notice that as a function of y, Eq. (10) represents m coupled equa- 
tions. Therefore, we shall conveniently represent the operator A in the vector 
form given below. 

Let 

g(x) = 

and 

Therefore 

g(x, m)J 

i/(x, i). 0 1 
F(x) = [ 0 ~f(x, m) ] 

[ - - ~ 1 1 ( X ) ~ 1 2 ( X )  " ' "  ~m(X) ] 
r (x )  = : 

L )tml(X))tm2(X) -- )tmm(X)J 

Ag(x) = F(x)  dg(x) y + r (x )g (x )  

where we take Ag(x) to mean 

(11) 

1 
Ag(x, m)J 

It has been assumed throughout that in forward (backward) phases the 
velocities must be greater than some strictly positive (negative) value, except 
at the right (left) boundary as described in Section 2. From a strictly mathe- 
matical point of view the case for which the velocities approach zero can be 

treated given proper assumptions (i.e., S~ [~u(v)]f(v, j)] dv finite for each j )  
by methods such as in Chapters 4 and 5 of Ref. 23. 

By Dynkin, ~22) paragraph 1.15, p. 40, for g ~ Da the expectation Et(gizo) 
is continuous from the right for every Zo ~ H, and in addition the time deriva- 
tive from the right exists, is continuous for every z0 ~ H, and satisfies 

O+ Et(g[zo)[Ot = AE~(glzo) (lZa) 
= Et(Ag[zo) (12b) 

where limt-.o Et(glzo) = g(Zo). 
In (12a), A in vector form is used operating on the variable zo, while 
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in (12b), A in scalar form (10) is used for each z0. Suppose that we choose 
g(x, y) ~ DA such that for j a forward phase 

1, ~ < ~ x < / 3 ,  y = j  
g(x, y) = 0, otherwise 

where a < c~ </3 ~< b. Then by (12a) 

o + P ( t ,  ~ ~< x < / 3 , j l z 0 )  = F(xo) a P ( t ,  ~ ~ x < / 3 , j l z 0 )  
at aXo 

§ r(xo)P(t, ~ ~ x < /3,j[zo) (13a) 

Similarly for j a backward phase we obtain 

a+P(t, ~ < x <./3,j]zo) = F(xo) aP(t, ~ < x <~ /3,jlzo) 
at bXo 

+ r(xo)P(t ,  ~ < x <<./3,jlzo) (13b) 

Similar equations hold for rest phases. By (12b) f o r j  a forward phase 

a + P ( t ,  ~ <. x < / 3 , j l z o )  [.B 
~t = - 3  hjj(r ) d~P(t, x < ~',jlz0) 

+ hyj(7) d~P(t, x < 7, ylzo) (14a) 

For constant exchange coefficients on (a, b) this last equation becomes 

a+P(t, c~ ~ x </3,j]zo) = _hysp(t ' c~ ~< x < /3,jIzo) 
at 

+ ~ AyjP(t, ~ <~ x </3, ylzo) (14b) 
y = l  

This equation states that the net amount of material entering during a short 
time interval the region [a,/3) in phase j via phase j is negligible compared to 
that crossing into phase j from other phases on the subinterval [%/3). 

5. D I S C U S S I O N  

By formal substitution of the spatial derivative of probability distribu- 
tion function F(t, %j[zo) = P(t,  x < % y = j[zo) into Eqs. (12a) and (12b) 
one obtains (2). Essentially this is what was done in Ref. 20 to obtain forward 
and backward equations of Kolmogorov related to this process. 

An example of a degenerate system (i.e., one phase without absorption) 
is discussed in Ref. 22, paragraph 2.15, p. 62. In Ref. 18 processes of the type 
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considered here are discussed. Theorem 1 is derived by another method. 
However, the problem of absorption, the properties of the exchange co- 
efficients, and the description of DA are not considered. 

For the case of all phases being rest phases the model reduces to the case 
of jump Markov processes such as discussed by Gikhman and Skorokhod (21) 
as well as in other texts. For the homogeneous case of fixed velocities and 
fixed exchange coefficients on (a, b) the system is equivalent to a process 
whose paths are integrals of the sample functions of a renewal process in 
which the time scale varies from phase to phase. 

In future work we shall exploit Theorems 1-3 and Eqs. (12a) and (12b) 
in order to specify conditions which ensure identifiability of the system from 
input-output  data. We plan to investigate properties of the residence time 
distributions (i.e., output data) in order to develop an explicit method for 
identification of the spatially varying system parameters. Further, we shall 
examine the case of systems with recycling (i.e., reflecting boundaries). 

Development of novel, more efficient schemes for the computation of the 
solution of the linear hyperbolic partial differential equation describing 
multiphase plug-flow is currently under way. 

A P P E N D I X  A. PROOF OF T H E O R E M  1 

Assume for �9 ~ [t, t + ~] that Ayj(x~) is continuous for all j r y with the 
possible exception being at t + a (xt+, is defined in the statement of the 
theorem). Suppose that y is a forward phase. 

Let 7 be the unique solution (time) which satisfies the equation fs = 
f ( r s ,  y) ,  s ~ [0, 7], for given initial condition ro and final condition re, i.e., the 
time it takes to go from ro to r s in phase y. The unidirectional nature of the 
velocity f ensures a unique 7 for which ry = r I, provided the initial and final 
conditions are consistent with the sign o f f  In particular let 7 be the solution 
for r0 = xt+~ - fma~ At  and r I = xt+~. It  therefore follows from the infini- 
tesimal conditions that 

P ( y ( r ,  co) = y all ~- E [t3, Yllx~+= - f~== At, y) >~ 1 -- L~ - o(7) 

Since At -+ 0 implies that 7 ---> 0 for e > O, choose At in the sequel such that 
the above probability /> (1 - e). Let p ~ [t, t + a] be arbitrary. Let 

A ={o~: y(z, o J ) - - y f o r ~ - e [ t , p ] ,  x ( t , o ~ ) = x }  

B = {o~: y(% ~o) -~ y for -r ~ [O, t + c~], x(fi, ~o) = x + f ( x s ,  y )  ds} 

T =  A n B = { c o :  y(z ,o~) = y,  - c ~ [ t , t  + ~], x( t ,  co) = x} 
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Note  that  by the right continuity o f  the sample paths it follows that  A, B, and 
T are generated by cylinder sets on [t, t + ~] and hence measurable events. 
Thus by the Markov  proper ty  

e(rlt,  x, y) = P(Bfp, x + f(xs, y) as, y)P(AIt,  x, y) 

Let {tz~}, l = 0, 1, ..., 2 ~, be the nth binary parti t ion o f  [t, t + ~ - ~,] 
where to m = t, t ~ 

Inductively we surmise that  

p ( r I t ,  x,  y)  

= IFT y a l l  + f ( xs ,  y) ds, y 
t 

x [1 - o ( , ) ]  

where O(E) goes to zero as E goes to zero. 
Taking natural  logari thms and using the infinitesimal properties and 

letting At" = (c~ -- p)/2 ", we obtain 

2 n -  1 

l nP(T[ t ,  x , y )  = ~ ln[1 - A~(x( t ? ) )At"  + o(At~)] + ln[1 + 0(r 
/ = 0  

where x(t?) is the solution to s = f (x~,  y), xt = x, s e [t, fi"], and o(At~) 
uniformly bounded  on [a, b] • Y. Recalling that  for  - 1 < p < 1, In(1 + p)  
= p + O(p2), by the continuity of  Ay~ on [t, t + a - p] we obtain 

2 n -  1 

l n P ( T l t ,  x , y )  = - ~ A~u(x(C))At" + 2"o(At") + O(e) 
/ = 0  

Since e is arbi t rary and lim~_~ ~ 2"o(At ") = 0, passing to the limit as n -+  ~ ,  
we obtain the result for  the case o f  y a forward  phase and a possible dis- 
continuity o f  A~ at xt+,  (recall that  At is arbitrary).  

For  the case of  multiple finite discontinuities in huu, we let x~, i = 1 . . . .  

n ~  be the points o f  discontinuity and ~-~ the times on the trajectory x~ = 

x + f~f(x~, y) ds, -~ >1 t, at which the discontinuities are encountered. Thus 

as shown above by the M a r k o v  proper ty  

nlt i t  

P(TIt,  x, y) = ~ P(y(~, o~) = y, all ~ ~ [~,, ~,+,11~,, x, , ,  y )  
t = 0  

where ro = t, t ,~  + ~ = t + ~. Then the result is obtained by using the result 
above for  the case o f  a discontinuity at the endpoint.  

For  y a backward  phase the same p r o o f  holds with the obvious changes. 
The case of  y a rest phase is actually a subcase o f  the forward case. 
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A P P E N D I X  B. P R O O F  OF T H E O R E M  2 

All the events defined below are measurab le  (see explanat ion in the 
p r o o f  of  Theo rem 1, Appendix  A). 

Let  pz be the finite, ordered set of  discontinuities in the t ransfer  co- 
efficients ~j(x) for  j = 1, ..., m. Suppose tha t  i is a fo rward  phase. Let  r~ be 
the unique t imes on the t ra jectory x~, s ~ [t, t + ~] for  which x,, = p~ (see 
theorem statement) .  For  j ~ i let 

c = {o,:  x ( t ,  0,) = x ,  y ( t ,  ,o) = i, 

y ( t  + ~, oo) = j ~ i, one j u m p  on (t, t + c~]} 

Let  

Ct = {oo : x ( t ,  o~) = x ,  y ( r ,  oJ) = i, r e [t, r~]; 

y( r ,  oJ) = j ,  r e [zt+l,  t + ~] ; one j u m p  on (rz, ~'l+1)} 

Clearly the Cz are disjoint and  C : U C~. Let  

Dz,a = {oJ: x ( t ,  co) = x ,  y ( r ,  oJ) = i, r e [t, "c~+ 1 - 31; 

y( r ,  ~o) = f i  r e  [rz+l, t + a]; one j u m p  on (rz+l - 3, rt+l]} 

Let  Dz = Cz - Dz,~. By the M a r k o v  proper ty ,  the infinitesimal condit ions,  
and Theo rem 1, for  each E > 0 there exists a 3 > 0 for  which 

P(Ol ,~[ t ,  x ,  i )  < e 

Choosing �9 as such, let {tk "} be the nth binary par t i t ion of  [rt, r z + 1 - 8] 
where n is chosen so tha t  (rz + ~ - 8 - r~)/2" < & Define 

Ag" = r x(rz, w) = x +  f ( x s ,  i )  ds,  y ( r , w )  = i, r e [ r ~ , t ~ " ] ;  

y(r ,  oJ) = j ,  r e  [t~+l, t + ~]; one j u m p  on (tk", t~+~]} 

Note  tha t  the Ak ~ are disjoint and  Dz -- I,_)~ Ak". Let  

B = ~ :  x ( r~ ,  ~ )  = x + f ( x s ,  i)  as ,  y ( r ,  o~) = i, r e [r~, t ~ ] ;  

one j u m p  t o j  on (t~ '~, t~+l]}  

Let  IB be the indicator  junct ion  of  the set B. 
Suppose tha t  j is a rest phase. By the s t rong M a r k o v  proper ty  and 

Theorem 1 

P(A~[~-~ ,  x~,,  i )  = E ( I B  exp{-- [t + c~ -- ~,])ty~(x,)}lr~, x~,, i )  (B.1) 
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where y is the random jump time on (tk ", t~+l]. By the continuity of Ajj f o r j  
a rest phase 

E(IB exp{-[ t  + ~ - rla;;(x,)}l,,, i) 

~< e x p < - [ t  + c~-  t~+~]min~jj(p);E(IBlr,,x,,,i) (B.2) 
f 

exp, - -  [t + c~ - t"e ]max A,,(p)~E(I,I~-t, x~,, i) 
N 

/> 
k pete ) 

where r = [xt~, xr247 
By the Markov property and Theorem 1 

E(IB[r', x.,, i) = exp[-f,i~" A,(x~) ds] [~,(xt~) zXt + o(zXt)] (B.3) 

where At = (r,+ ~ -- 3 -- ~-~)/2 ". 
Again by the Markov property and Theorem 1 

P(Dzlt, x, i) = k=~o= exp - ~,(x~) ds P(Ak"l-c~, x,., i) (B.4) 

By (B.1)-(B.3), passage to the limit as n ~ oo, and the arbitrariness of e, 
we conclude from continuity of ~Js and that of ~'s on (x,,, x~z + 1] that 

P(Cilt, x, i) = - ~i~(x~) ds ~j(x,) exp[ - ( t  + ~ - s);~jj(x~)] ds 

Since P(C[t, x, i) = ~z P(C~It, x, i), the result follows f o r j  a rest phase. 
Suppose that j is a forward phase. By the strong Markov property and 

the corollary to Theorem 1 

P(A~"lrz, x~,, i) = EfI\ B ex "[e [-)~,(x*+~JJ(V)dv ~z, x~, i} 

where 9' is the random jump time on (tk", t~+,] and x*+~ is defined in the 
theorem statement. 

~ t  + a - -  f m a x A t  

x t ~ +  1 

.~t + e + f m a x A t  

>~exp[- f a'(V) dv] 
xt~ 

where 2r is the solution to 

2, = xt~+l + f(2, , j )  ds for r i> t~+l 
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and At = (~z + 1 - 3 - rz)/2 ". Note  that  for  every o, ~ A~ ", 

2~ + ~ - fm~x At <. x( t  + a, o,) <. ~t + ~ + fm~x At 

Changing variables, we obtain 

P(A~lr t ,  x ~ , i ) ~  (exp ; tm~fmaxAt ) [ F t+~ dr]E(IBlr~,x~,  f~l~ exp - his(.% ) i) 
L ,~t~+ 1 

exp[-j t~,  ~ )b.~(2~) E(IB],I, X~z, 

For  the present subcase (B.3) and (B.4) are in effect. Hence by (B.3)- 
(B.5), passage to the limit as n ---> 0% the arbitrariness of  ~, and the continuity 
o f  A~j(x~) on [,~, *z+l), we conclude that  

P(Czlt, x, i) = exp - ~(x~) ds ~j(x,) e x p / -  J ,~jj(xB*) d~ ds 
| k 8 

Since P(Cl t ,  x, i) = ~.z P(Cz[t, x, i), the result follows. 
F o r j  a backward  phase the p roof  is similar to the case o f j  forward with 

the appropria te  changes. 
We remark  that  the case of  i a rest phase is a subcase the case o f  i a 

forward  phase. 
For  i a backward  phase the p roo f  is similar to the above with the 

appropria te  modifications. 
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